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Abstract In this paper, we consider the direction and stability of Hopf bifurcation
induced by time delay in a food-limited models with feedback control and fractional
diffusion. By means of analyzing eigenvalue spectrum, we show that the positive
equilibrium is locally asymptotically stable in the absence of time delay, but loses its
stability via the Hopf bifurcation when the time delay increases beyond a threshold.
Using the norm form and the center manifold theory, we investigate the stability and
direction of the Hopf bifurcation. The stability of the Hopf bifurcation leads to the
emergence of spatial spiral patterns. Numerical calculations are performed to illustrate
our theoretical results.

Keywords Fractional diffusion · Time delay · Hopf bifurcation · Spiral pattern

1 Introduction

In this paper, we consider the delayed food-limitedmodel with feedback and fractional
diffusion as follows:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u1
dt − D1∇γ u1 = u1

[
r(K−u1)
K+au1

− cu2(x, t − τ)
]
, (x, t) ∈ � × (0, T ),

∂u2
dt − D2∇γ u2 = −du2 + bu1(x, t − τ), (x, t) ∈ � × (0, T ),

∂u1
∂η

= ∂u2
∂η

= 0, (x, t) ∈ ∂� × (0, T ),

u1(x, t) = ψ1(x, t), u2(x, t) = ψ2(x, t), (x, t) ∈ � × [−τ, 0].

(1.1)

Here u1 = u1(x, t) denotes the density of a single species and function u2 = u2(x, t)
is regarded as a “feedback control” variable. r represents the intrinsic growth rate and
K represents the carrying capacity. r

a is the replacement of mass in the species at
saturation. c is the feedback effort. τ is the time delay, which means that the effect
of feedback control is not instantaneous, but mediated by some time lag required for
maturity of species. d and b are the coefficients of the feedback function. For more
details in the feedback control system, please see [1,2]. K , a, c, d, b, and τ are
positive constants. ∇γ (1 < γ < 2) is a fractional power of the Laplacian. D1 and D2
are fractional dispersal rates. The fractional Laplacian implies that the species possess
the continuous time random walk with a Lévy distribution where jump length has a
heavy tailed variance. � is a bounded domain in R2 with boundary ∂� and η denotes
the outward normal derivative on ∂�. The initial valuesψ1(x, t) andψ2(x, t) are non-
negative smooth functions which are not identically zero. The homogeneous Neumann
boundary conditions indicate that there is no species flux across the boundaries.

The motivation and derivation of the fractional operator in Eq. (1.1) are as follows.
We take u(x, t) as an example in an isotropic setting [3]. The Fick’s Law states that
mass is transported at a flux V = −D∇u through a unit area. Taking into account the
mass conservation, i.e.,

∂u

∂t
= −∇ · V, (1.2)

we have the classic diffusion equation

∂u

∂t
= ∇ · (D∇u). (1.3)

The fundamental assumption behind this approach is homogeneous media, which is
questioned for heterogeneous media [4], because in heterogeneous structures such as
those processing spatial connectivity, movement of particles may be facilitated with
a certain scale–so-called superdiffusion. Since the spatial complexity of the environ-
ment can impose geometric constraints on the transport processes on all length scales,
resulting in temporal correlations on all time scales, inhomogeneous media can there-
fore alter the laws ofMarkow diffusion, leading to long range fluxes and non-Gaussian
heavy tailed profiles [5,6] and thus these motions may no longer follow Fick’s Law
[7]. This is also related to homogenisation principle which is fundamental for pre-
dicting macroscopic properties from microscopic features [8]. The macroscopic and
microscopic is often assumed to be independent, but in some settings the independency
breaks down and the homogenisation principle does not hold. It is in this context that
fractional models can offer insights that traditional approaches do not offer, especially
for the case of diffusion in heterogeneous environments.
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A diffusion equation with fractional operator can be derived by replacing Fick’s
Law for the flux V by its fractional counterpart [9],

V = −D∇βu, (1.4)

where β = γ − 1. The fractional operator ∇β =
(

∂β

∂xβ , ∂β

∂yβ

)
is the Weyl fractional

gradient in two dimensional space, and

∂β

∂xβ
u(x, y) = − sec(πγ /2)

2
(1 − β)

∂

∂x

∫ ∞

−∞
u(s, y)

|x − s|β ds, (1.5)

with similar expressions for ∂β

∂yβ [10]. The fractional Fick’s Law (1.4), which implies
spatial and temporal non locality, can be rigorously derived be means of spatial aver-
aging theorems and measurable functions [11]. Combining the fractional Fick’s Law
and the mass conservation (1.2) leads to

∂u

∂t
= −∇ · (−D∇βu), (1.6)

which can be equivalently rewritten as

∂u

∂t
= D∇γ u. (1.7)

It is verified that the Fourier transform of∇γ u satisfiesF(∇γ u) = −|k|γF(u), where
k is the wavenumber. In higher dimension, the Laplacian is replaced by the operator
∇γ = −(−�)γ/2.

Pattern formation in reaction-diffusion systems with anomalous diffusion has
received considerable attention [12–17]. For instance, it was shown that the Lévy
flights type superdiffusion induces the formation of Turing pattern [15]. It was also
shown that subdiffusion suppresses the formation of Turing pattern [14]. In [16,17],
Turing patterns were induced by the anomalous diffusion both in Brusselator chemical
system and Boissonade chemical system. Additionally, in systems with Lévy flights,
the emergence of spiral waves and chemical turbulence from the nonlinear dynamics
of oscillating reaction-diffusion patterns was investigated in [18]. A natural question
is how fractional diffusion affects the spiral waves from the mathematical viewpoint.
Our aim is to show that the Hopf bifurcation causes the reaction-diffusion system with
fractional diffusion to generate the spiral patterns.

The remaining parts of the paper are constructed in the following way. In Sect. 2,
we get the local asymptotic stability and Hopf bifurcation of the positive equilib-
rium of system (1.1). The direction and stability of Hopf bifurcation are discussed by
taking time delay as a bifurcation parameter in Sect. 3. In Sect. 4 we perform some
numerical simulation to illustrate our theoretical analysis. The paper ends with a brief
discussion.
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2 Stability of positive equilibrium and the existence of Hopf bifurcation

In this section, we investigate the local asymptotic stability of the positive equilibrium
and the existence of Hopf bifurcation.

It is easy to veify that the system (1.1) has an unique positive equilibrium

u∗ = (u∗
1, u

∗
2), where u∗

1 = −(bcK+dr)+
√

(bcK+dr)2+4abcdrK
2abc , u∗

2 = bu∗
1

d . Linearing
the system (1.1) around u∗ gives

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u1
∂t −D1∇γ u1 = u1

[
− r K (1+a)u∗

1
(K+au∗

1)
2 u1−cu∗

1u2(x, t−τ)
]
, (x, t) ∈ � × (0, T ),

∂u2
∂t − D2∇γ u2 = bu1(x, t − τ) − du2, (x, t) ∈ � × (0, T ),

∂u1
∂η

= ∂u2
∂η

= 0, (x, t) ∈ ∂� × (0, T ),

u1(x, t) = ϕ1(x, t) − u∗
1, u2(x, t) = ϕ2(x, t) − u∗

2, (x, t) ∈ � × (−∞, 0].
(2.1)

Since the boundary condition is homogeneous Neumann on the domain �, the appro-
priate eigenfunction of Eq. (2.1) is

(u1, u2) = (c1, c2)eλt coskx, (2.2)

where λ is the eigenvalue and k is the wavenumber. Consequently, substituting (2.2)
into Eq. (2.1) yields

⎧
⎨

⎩

(λc1 + D1kγ c1)eλt cos kx =
[
− r K (1+a)u∗

1
(K+au∗

1)
2 c1 − cu∗

1e
−λτ c2

]
eλt cos kx,

(λc2 + D2kγ c2)eλt cos kx = (be−λτ c1 − dc2)eλt cos kx .
(2.3)

Therefore, we can get that nontrivial solution to Eq. (2.3) exists if and only if

det

⎛

⎝
λ + D1kγ + r K (1+a)u∗

1
(K+au∗

1)
2 cu∗

1e
−λτ

−be−λτ λ + D2kγ + d

⎞

⎠ = 0. (2.4)

By simple calculation, we obtain the following characteristic equation:

∇γ (λ, τ ) = λ2 + Akλ + Bk + Cke
−2λτ = 0, (2.5)

where

Ak =D1k
γ +D2k

γ + r K (1+a)u∗
1

(K+au∗
1)

2 +d, Bk =
(

D1k
γ + r K (1+a)u∗

1

(K+au∗
1)

2

)

(D2k
γ + d)

Ck = bcu∗
1. (2.6)
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We now investigate the local asymptotic stability of u∗ for system (1.1). It is well
known that u∗ is locally asymptotically stable if all roots λ of the characteristic Eq.
(2.5) satisfy Re{λ} < 0.

Theorem 2.1 Assume that the parameters of system (1.1) satisfy

(G1) : drK (1 + a)

(K + au∗
1)

2 < bc,

then

(i) If the delay is absent, that is τ = 0, thenu∗ of system (1.1) is locally asymptotically
stable.

(ii) If the delay is present, that is τ �= 0, then there exists a critical point τ ∗. u∗
is locally asymptotically stable when τ < τ ∗ and u∗ is locally asymptotically
unstable when τ ≥ τ ∗.

Proof We first prove part (i). Eq. (2.5) becomes

λ2 + Akλ + Bk + Ck = 0 (2.7)

when τ = 0. It follows from the assumption (G1) that Ak > 0 and Bk +Ck > 0. Then
the real parts of the roots of Eq. (2.7) are negative. Thus, by virture of the Routh–
Hurwitz theorem, u∗ is asymptotic stable when τ = 0. This completes the proof of
part (i).

Next, we prove part (ii). Suppose that λ = iω, with w > 0, is a root of Eq. (2.5),
then we obtain

(iω)2 + iωAk + Bk + Cke
−2iωτ = 0.

Separating the real parts and imaginary parts, we have

{
ω2 − Bk = Ck cos 2ωτ,

Akω = Ck sin 2ωτ,
(2.8)

which leads to

ω4 + (A2
k − 2Bk)ω

2 + B2
k − C2

k = 0, (2.9)

where

A2
k − 2Bk =

(

D1k
γ + r K (1 + a)u∗

1

(K + au∗
1)

2

)2

+ (D2k
γ + d)2 > 0,

B2
k − C2

k =
[(

D1k
γ + r K (1 + a)u∗

1

(K + au∗
1)

2

)

(D2k
γ + d) − bcu∗

1

]

×
[(

D1k
γ + r K (1 + a)u∗

1

(K + au∗
1)

2

)

(D2k
γ + d) + bcu∗

1

]

. (2.10)
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For somefixed k, it is easy to check that B2
k −C2

k < 0when (G1) is satisfied. Therefore,
Eq. (2.9) has a unique positive real root,

ωk =
√

−(A2
k−2Bk )+

√

(A2
k−2Bk )2−4(B2

k −C2
k )

2 .
(2.11)

Then Eq. (2.5) has pure imaginary roots ±iω∗ when

τ
j
k = 1

2ωk
arctan

Akωk

ω2
k − Bk

+ 2 jπ

ωk
, j = 0, 1, 2, · · · . (2.12)

Set τ ∗ = τ 0k and ω∗ = ωk . Then, by the Butler’s Lemma [19] proven in Appendix
A, u∗ is unstable for τ > τ ∗. On the other hand, if τ ∈ [0, τ ∗), then Eq. (2.5) has
no roots on the imaginary axis. Making use of the eigenvalue theory of [20], the sum
of orders of the zeros of Eq. (2.5) for τ ∈ [0, τ ∗) is equal to Eq. (2.7). Then Eq.
(2.5) for τ ∈ [0, τ ∗) only has negative real part roots, which implies that u∗ is locally
asymptotically stable for τ < τ ∗.This completes the proof of part (ii). 	

Theorem 2.2 Under the assumption (G1), solutions of the system (1.1) undergo a
Hopf bifurcation at u∗ when τ = τ ∗.
Proof Denote λ(τ) = σ(τ) + iω(τ), is the root of Eq. (2.5) satisfying σ(τ ∗) = 0
and ω(τ ∗) = ω∗. Substituting λ(τ) into Eq. (2.5) and taking the derivative of λ with
respect to τ , we obtain

[
dλ

dτ

]−1

= (2λ + Ak)e2λτ

2λCk
− τ

λ
.

Note that

sign

{
dRe(λ(τ ))

dτ

}

τ=τ∗
= sign

{

Re

[
dλ(τ)

dτ

]}

τ=τ∗

= sign

{

Re

[
dλ(τ)

dτ

]−1
}

τ = τ ∗

which, together with (2.8), (2.11) and (2.12), leads to

sign

{

Re

[
dλ(τ)

dτ

]−1
}

τ=τ∗

= sign

{

Re

[
dλ(τ)

dτ

]−1
}

λ=iω∗

= sign

{

Re

[
(2iω∗ + Ak)(cos2τ ∗ω∗ + isin2τ ∗ω∗)

2iω∗Ck
− τ ∗

iω∗

]}

= sign

{
2ω∗3 + (A2

k − 2Bk)ω
∗

2ω∗C2
k

}

.
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From (2.10), we find that the transversality condition

sign

{
dRe[λ(τ)]

dτ

}

τ=τ∗
> 0 (2.13)

holds. Therefore, solutions of the system (1.1) undergo a Hopf bifurcation at u∗ when
τ = τ ∗. 	


3 The direction and stability of the Hopf bifurcation

In the previous section, we obtained condition (G1) ensuring system (1.1) undergoes
a Hopf bifurcation at u∗. In this section, we shall establish the explicit formula for
determining the direction and stability of periodic solutions bifurcating from u∗ at τ ∗,
by using normal form theory and center manifold argument presented in Hassard et
al. [21] .

By the change of variables u1(x, t) − u∗
1 �→ w1(x, t), u2(x, t) − u∗

2 �→ w2(x, t)
and τ −τ ∗ �→ μ and by rescaling the time t �→ (t/τ ∗), the system (1.1) can be written
as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tw1 = (τ ∗+μ)
[
D1∇γ w1− drK (1+a)u∗

1
(K+au∗

1)
2 w1−cu∗

1w1(x, t−1)−cw1w2(x, t−1)

− r K 2(1+a)

K+au∗
1)

3 w2
1 + r K 2a(1+a)

(K+au∗
1)

4 w3
1 + �i>3

(−1)i−1r K 2ai−2(1+a)

(K+au∗
1)

i+1 wi
1

]
,

∂tw2 = (τ ∗ + μ)[D2∇γ w2 − dw2 + bw1(x, t − 1)].
(3.1)

Throughout this section, we refer to Hassard et al. [21] for explanations of notations
involved. Then the system (3.1) is transformed into a functional differential equation
in C := C([0, 1], R2).

ẇ(t) = Lμ(wt ) + f (γ,wt ), (3.2)

where w(x, t) = (w1(x, t), w2(x, t))T ∈ R
2 and Lμ : C → R

2, f : R × C → R
2

are respectively represented by

Lμ(φ) = (τ ∗ + μ)

(
D1∇γ − r K (1+a)u∗

1
(K+au∗

1)
2 0

0 D2∇γ − d

) (
φ1(0)

φ2(0)

)

+ (τ ∗ + μ)

(
0 −cu∗

1

b 0

)(
φ1(−1)

φ2(−1)

)

, (3.3)

and

f (γ, φ) = (τ ∗ + μ)

(−cφ1(0)φ2(−1) − r K 2(1+a)

(K+au∗
1)

3 φ
2
1(0) + r K 2a(1+a)

(K+au∗
1)

4 φ3
1 + D

0

)

(3.4)
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where D = �i>3
(−1)i−1r K 2ai−2(1+a)

(K+au∗
1)

i+1 φi
1(0), φ(θ) = (φ1(θ), φ2(θ)) ∈ C. Since ±iω∗

are a pair of simple purely imaginary eigenvalues of the liner operator Lμ, Lμ is
transformed to

Lμ(φ) = (τ ∗ + μ)

(−D1kγ − r K (1+a)u∗
1

(K+au∗
1)

2 0

0 −D2kγ − d

)(
φ1(0)

φ2(0)

)

+ (τ ∗ + μ)

(
0 −cu∗

1

b 0

)(
φ1(−1)

φ2(−1)

)

. (3.5)

By the Riesz representation theorem, there exists a 2 × 2 matrix η(θ, μ), θ ∈
[−1, 0], whose elements are functions of bounded variation such that

Lμφ =
∫ 0

−1
[dη(θ, μ)]φ(θ), for φ ∈ C. (3.6)

In fact, we can choose

η(θ, μ) = (τ ∗ + μ)

(−D1kγ − r K (1+a)u∗
1

(K+au∗
1)

2 0

0 −D2kγ − d

)

δ(θ)

+ (τ ∗ + μ)

(
0 −cu∗

1

b 0

)

δ(θ + 1), (3.7)

where δ is a Dirac delta function. Then (3.6) is satisfied. For φ ∈ C1([−1, 0],R2),
define

A(μ)φ =
⎧
⎨

⎩

dφ(θ)
dθ

, for θ ∈ [−1, 0),
∫ 0
−1[dη(s, μ)]φ(s), for θ = 0,

(3.8)

and

R(μ)φ =
{
0, for θ ∈ [−1, 0),

f (μ, φ), for θ = 0.
(3.9)

Then the system (3.2) is equivalent to the following operator equation

ẇt = A(μ)(wt ) + R(μ)(wt ). (3.10)

As in [21], wt (θ) = w(t + θ) for θ ∈ [−1, 0]. Now, for ψ ∈ C1([0, 1], (R2)∗), we
define

A∗ψ(s) =
⎧
⎨

⎩

− dψ(s)
ds , for s ∈ [−1, 0),

∫ 0
−1 ψ(−t)dηT (t, 0), for s = 0,

(3.11)
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and a bilinear inner product < ·, · > by

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0) −
∫ 0

−1

∫ θ

0
ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (3.12)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators.
From the discussion in Theorem 2.1, we know that ±iω∗τ ∗ are eigenvalues of

A(0). Thus they are also eigenvalues of A∗. Next, we calculate the eigenvector q(θ) of
A(0) belonging to the eigenvalue iω∗τ ∗ and the eigenvector q∗(s) of A∗ belonging to
the eigenvalue −iω∗τ ∗. Let q(θ) = (q1, q2)T eiω

∗τ∗θ ,−1 < θ ≤ 0. From the above
discussion, we know that A(0)q(θ) = iω∗τ ∗q(θ), i.e.,

⎛

⎝
−D1kγ − r K (1+a)u∗

1
(K+au∗

1)
2 − iω∗ −cu∗

1e
−iω∗τ∗

be−iω∗τ∗ −D2kγ − d − iω∗

⎞

⎠

(
q1
q2

)

= 0.

Therefore, we have

q(θ) =
(

1,
be−iω∗τ∗

D2kγ + d + iω∗

)T

eiω∗τ∗θ . (3.13)

Similarly, let q∗(s) = M(q∗
1 , q∗

2 )eiω
∗τ∗s be the eigenvector of A∗ corresponding to

−iω∗τ ∗. Then we have the following relationship: A∗q∗(s) = −iω∗τ ∗q∗(s), i.e.,
⎛

⎝
−D1kγ − r K (1+a)u∗

1
(K+au∗

1)
2 + iω∗ beiω

∗τ

−cu∗
1e

iω∗τ −D2kγ − d + iω∗

⎞

⎠

(
q∗
1

q∗
2

)

= 0.

Hence, we have

q∗(s) = M

(
D2kγ + d − iω∗

−cu∗
1e

iω∗τ , 1

)

eiω
∗τ∗s . (3.14)

In order to ensure 〈q∗(s), q(θ)〉 = 1, we need to determine the value of M . By (3.12),
we have

〈q∗(s), q(θ)〉 = q̄∗(0)q(0) −
∫ 0

−1

∫ θ

0
q̄∗(ξ − θ)dη(θ)q(ξ)dξ

= M̄(q̄∗
1 , q̄∗

2 )(q1, q2)
T

−
∫ 0

−1

∫ θ

0
M̄(q̄∗

1 , q̄∗
2 )e−iω∗τ∗(ξ−θ)dη(θ)(q1, q2)

T eiω
∗τ∗ξdξ

= M̄q̄∗
1

(
q1 + τ ∗e−iω∗τ∗

(0q1 − cu∗
1q2)

)
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+ M̄q̄∗
2

(
q2 + τ ∗e−iω∗τ∗

(bq1 − 0q2)
)

= M̄
(
q̄∗
1q1 + q̄∗

2q2 − cu∗
1q2τ

∗e−iω∗τ∗ + bτ ∗q1e−iω∗τ∗)
.

Since q1 = 1, q∗
2 = 1, we can choose M as

M̄ = 1/
(
q̄∗
1 + q2 − cu∗

1q2τ
∗e−iω∗τ∗ + bτ ∗e−iω∗τ∗)

, (3.15)

where M̄ is the conjugate imaginary of M .
Next, we compute the coordinate to describe the center manifold C0 at μ = 0. Let

wt be the solution of (3.10) when μ = 0. Define

z(t) = 〈q∗, wt 〉,
W (t, θ) = wt (θ) − 2Re{z(t)q(θ)}. (3.16)

On the center manifold C0, we have W (t, θ) = W (z(t), z̄(t), θ), where

W (z(t), z̄(t), θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · . (3.17)

In fact, z and z̄ are local coordinates for the center manifold C0 in the direction of q∗
and q̄∗ respectively. Note that W is real if wt is real. We consider only real solutions.
For solution wt ∈ C0 of (3.10), since γ = 0 and (3.16), we have

ż(t) = 〈q∗, ẇt 〉
= iω∗τ ∗z + q̄∗(0) f (0,W (z, z̄, 0) + 2Re{zq(0)})
� iω∗τ ∗z + q̄∗(0) f0(z, z̄). (3.18)

We rewrite above equation as

ż(t) = iω∗τ ∗z + g(z, z̄), (3.19)

where

g(z, z̄) = q̄∗(0) f0(z, z̄)

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z̄2 z̄

2
+ · · · . (3.20)

In the following, our motivation is to expand g in powers of z and z̄ and then obtain
the coefficients. Combing (3.16) with (3.17), we obtain that

wt (θ) = W (t, θ) + 2Re{z(t)q(θ)}
= W20(θ)

z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ zq + z̄q̄ + · · ·
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= W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ (q1, q2)

T eiω
∗τ∗θ z

+ (q̄1, q̄2)
T e−iω∗τ∗θ z̄ + · · · (3.21)

Substituting (3.4) and (3.21) into (3.20), we have

g(z, z̄) = q̄∗(0) f0(z, z̄) = q̄∗(0) f0(z, wt )

= M̄τ ∗(q̄∗
1 , 1)

(−cφ1(0)φ2(−1) − r K 2(1+a)

(K+au∗
1)

3 φ
2
1(0) + r K 2a(1+a)

(K+au∗
1)

4 φ3
1 + D

0

)

= p1z
2 + p2zz̄ + p3 z̄

2 + p4z
2 z̄ + h.o.t., (3.22)

where h.o.t. stands for higher order terms, Wmn(θ) = (W (1)
mn (θ),W (2)

mn (θ))T and

p1 = M̄τ ∗q̄∗
1

[

−cq2e
−iω∗τ∗ − r K 2(1 + a)

(K + au∗
1)

3

]

,

p2 = 2M̄τ ∗q̄∗
1

[

−r K 2(1 + a)

(K + au∗
1)

3 − cRe
{
q̄2e

iω∗τ∗}
]

,

p3 = M̄τ ∗q̄∗
1

[

−cq̄2e
iω∗τ∗ − r K 2(1 + a)

(K + au∗
1)

3

]

,

p4 = M̄τ ∗q̄∗
1

[(−r K 2(1 + a)

(K + au∗
1)

3 − 1

2
cq̄2e

iω∗τ∗
)

W (1)
20 (0)

+
(

−2r K 2(1 + a)

(K + au∗
1)

3 − cq2e
−iω∗τ∗

)

W (1)
11 (0)

−1

2
cW (2)

20 (−1) − cW (2)
11 (−1) + 3r K 2a(1 + a)

(K + au∗
1)

4

]

(3.23)

Comparing the coefficients in (3.20) and (3.22), we have

g20 = 2p1, g11 = p2, g02 = 2p3, g21 = 2p4. (3.24)

Since g21 depends on W20(θ) and W11(θ), we need to find the values of W20(θ) and
W11(θ). From (3.2) and (3.16), we have

ẇ = ẇt − żq − ˙̄zq̄

=
{
AW − 2Re{q̄∗(0) f0q(θ)}, −1 ≤ θ < 0,

AW − 2Re{q̄∗(0) f0q(θ)} + f0, θ = 0,

� AW + H(z, z̄, θ), (3.25)
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where

H(z, z̄, θ) = H20
z2

2
+ H11zz̄ + H02

z̄2

2
+ · · · . (3.26)

From (3.17), we have

ẇ = ẇz ż(t) + ẇz̄ ˙̄z(t)
= (W20(θ)z + W11(θ)z̄ + · · · )(iω∗τ ∗z(t) + g(z, z̄))

+ (W11(θ)z + W02(θ)z̄ + · · · )(−iω∗τ ∗ z̄(t) + ḡ(z, z̄)). (3.27)

It follows from (3.20) that

ẇ = A(0)

(

W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · ·

)

+ H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · ·

= (A(0)W20(θ) + H20(θ))
z2

2
+ (A(0)W11(θ) + H11(θ))zz̄

+ (A(0)W02(θ) + H02(θ))
z̄2

2
+ · · · . (3.28)

Comparing the coefficients of z2 and zz̄ from (3.27) and (3.28), we get

(A(0) − 2iω∗τ ∗ I )W20(θ) = −H20(θ),

A(0)W11(θ) = −H11(θ). (3.29)

For θ ∈ [0, 1], it follows from (3.16), (3.17), (3.26) and (3.27) that

H(z, z̄, θ) = −q̄∗(0) f0q(θ) − q∗(0) f̄0q̄(θ) = −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ),

= −
(

g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ · · ·

)

q(θ)

−
(

ḡ20
z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ · · ·

)

q̄(θ). (3.30)

Comparing the coefficients of z2 and zz̄ between (3.26) and (3.30), we get

H20(θ) = −g20q(θ) − ḡ02q̄(θ),

H11(θ) = −g11q(θ) − ḡ11q̄(θ). (3.31)

It follows from (3.31), (3.29) and the definition of A(θ) that

Ẇ20(θ) = 2iω∗τ ∗W20(θ) + g20q(θ) + ḡ02q̄(θ), (3.32)
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Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ). (3.33)

Since q(θ) = (q1, q2)T eiω
∗τ∗θ , we obtain

W20(θ) = ig20
ω∗τ ∗ q(0)eiω

∗τ∗θ + i ḡ02
3ω∗τ ∗ q̄(0)e−iω∗τ∗θ + E1e

2iω∗τ∗θ , (3.34)

W11(θ) = −ig11
ω∗τ ∗ q(0)eiω

∗τ∗θ + i ḡ11
ω∗τ ∗ q̄(0)e−iω∗τ∗θ + E2, (3.35)

where E1 = (E (1)
1 , E (2)

1 )T and E2 = (E (1)
2 , E (2)

2 )T ) are constant vectors. Now, we
focus on the computation of E1 and E2. From the definition of A(0) and (3.33), we
have

∫ 0

−1
dη(θ)W20(θ) = 2iω∗τ ∗W20(0) − H20(0), (3.36)

and

∫ 0

−1
dη(θ)W11(θ) = −H11(0), (3.37)

where η(θ) = η(θ, 0). In view of (3.25), we induce that when θ = 0,

H(z, z̄, 0) = −2Re{q̄∗(0) f0q(0)} + f0
= −g(z, z̄)q(0) − ḡ(z, z̄)q̄(0) + f0. (3.38)

Then we have

H20
z2

2
+ H11zz̄ + H02

z̄2

2
+ · · · = −

(

g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ · · ·

)

q(0)

−
(

ḡ20
z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ · · ·

)

q̄(0) + f0.

(3.39)

Comparing both sides of (3.39), we obtain

H20 = −g20q(0) − ḡ02q̄(0) + 2τ ∗(H1, H2)
T , (3.40)

H11 = −g11q(0) − ḡ11q̄(0) + τ ∗(P1, P2)T , (3.41)

where H � (H1, H2)
T and P � (P1, P2)T are respectively the coefficients of z2 and

zz̄ of f0(z, z̄). Thus we have

H =
⎛

⎝
−cq2e−iω∗τ∗ − r K 2(1+a)

(K+au∗
1)

3

0

⎞

⎠ , (3.42)
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and

P = 2

⎛

⎝
− r K 2(1+a)

(K+au∗
1)

3 − cRe{q̄2eiω∗τ∗}
0

⎞

⎠ . (3.43)

Since iω∗τ ∗ is the eigenvalue of A(0) and q(0) is the corresponding eigenvector, we
get

(

iω∗τ ∗ I −
∫ 0

−1
eiω

∗τ∗θdη(θ)

)

q(0) = 0, (3.44)

and

(

−iω∗τ ∗ I −
∫ 0

−1
e−iω∗τ∗θdη(θ)

)

q̄(0) = 0. (3.45)

Therefore, substituting (3.36) and (3.44) into (3.45), we have

(

2iω∗τ ∗ I −
∫ 0

−1
e2iω

∗τ∗θdη(θ)

)

E1 = 2τ ∗H, (3.46)

that is

H∗E1 = 2H, (3.47)

where

H∗ =
⎛

⎝
2iω∗ + kγ D1 + r K 2(1+a)

(K+au∗
1)

2 cu∗
1e

−2iω∗τ∗

−be−2iw∗τ∗
2iω∗ + kγ D2 + d

⎞

⎠ . (3.48)

It follows that

E1 = 2

�

⎛

⎜
⎝

(2iω∗ + kγ D2 + d)(−cq2e−iω∗τ∗ − r K 2(1+a)

(K+au∗
1)

3 )

be−2iω∗τ∗
(−cq2e−iω∗τ∗ − r K 2(1+a)

(K+au∗
1)

3 )

⎞

⎟
⎠ , (3.49)

where � = Det (H∗). In a similar way, we can get

P∗E2 = 2P, (3.50)

where

P∗ =
⎛

⎝
kγ D1 + r K 2(1+a)

(K+au∗
1)

3 cu∗
1

−b kγ D2 + d

⎞

⎠ . (3.51)
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It follows that

E2 = 2

�̃

⎛

⎜
⎝

(kγ D2 + d)(
−rk2(1+a)

(K+au∗
1)

3 − cRe{q̄2eiω∗τ∗})
b(−rk2(1+a)

(K+au∗
1)

3 − cRe{q̄2eiω∗τ∗})

⎞

⎟
⎠ , (3.52)

where �̃ = Det (P∗). Thus, we can determine W20(θ) and W11(θ) from (3.34) and
(3.35). Furthermore, g21 can be expressed explicity.

By [21], the Hopf bifurcation periodic solutions of the system (1.1) at τ ∗ on the
center manifold are determined by the following formulas

C1(0) = i

2τ ∗ω∗

(

g11g20 − 2|g11|2 − |g02|2
3

)

+ g21
2

,

ν2 = − Re{C1(0)}
Re{ dλ

dτ
(τ ∗)} ,

β2 = 2Re{C1(0)},
T2 = −Im{C1(0)} + ν2 Im{ dλ

dτ
(τ ∗)}

τ ∗ω∗ . (3.53)

Here ν2 determines the direction of Hopf bifurcation. If ν2 > 0 (ν2 < 0), then the
Hopf-bifurcation is forward (backword). β2 determines the stability of the bifurcating
periodic solutions. If β2 < 0 (β2 > 0), then the bifurcating periodic solutions are
stable (unstable). T2 determines the periods of bifurcation periodic solutions. If T2 >

0 (T2 < 0), then the period increases (decreases). Therefore, we have the following
results.

Theorem 3.1 The Hopf bifurcation of the system (1.1) occurring at u∗ when τ = τ ∗
is forward (backward) if ν2 > 0 (ν2 < 0) and the bifurcating periodic solutions on
the center manifold are stable (unstable) if Re{C1(0)} < 0 (> 0).

4 Numerical results

For numerical study of pattern formation in the system (1.1), we only need consider
the dynamics of the perturbation to the homogeneous steady state. Hence we use the
periodic boundary conditions and the small-amplitude random initial data to the system
(1.1). We can use the pseudospectral method [22] to perform numerical computations
with time integration in Fourier space.Moreover, we use a Crank–Nicolson scheme for
the linear operator and an Adams–Bashforth scheme for the nonlinear operator [23].
Now we carry out numerical simulation to demonstrate the analytical results. To this
end, the domain of system (1.1) is confined to a square domain � = [0, L]× [0, L] ⊂
R
2 with L = 200.
For numerical simulations, we take the following parameter values
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r = 1.1, K = 1.1, a = 0.1, b = 0.9, c = 0.8, d = 0.1,

D1 = 0.1, D2 = 0.2, γ = 1.5, τ = 1.55. (4.1)

It is easy to check that condition (G1) are fulfilled. Moreover, this set of parameters
gives a unique positive equilibrium

(u∗
1, u

∗
2) = (0.1327, 1.1947), (4.2)

which is locally stable when τ < τ ∗ and unstable when τ > τ ∗, according to Theorem
2.1. Here the critical value τ ∗ is the smallest value among all τ

j
k , that is, τ

∗ = τ 0k =
1.4168.

To check the stability and direction of the Hopf bifurcations, we compute the
first Lyapunov number C1(0). Here we only consider the first bifurcation threshold,
that is, τ ∗. Direction calculation shows that C1(0) = −0.5153 − 5.0739i , that is,
Re{C1(0)} < 0, which means that the bifurcating periodic solution from the spatially
uniform equilibrium is asymptotically stable.

It iswell-known that for a purely spatial homogeneous initial distribution, the system
always sustains homogeneous and the spatial pattern does not generate. So we take
the initial conditions with an inhomogeneous spatial perturbation. Our simulations
indicate that the spiral pattern emerges. Moreover, the number of the spiral pattern
depends on the number of the defect-point of the initial data. We recall that the defect-
point (xc, yc) of the initial data means that (xc, yc) satisfied that u1(xc, yc)|t=0 = u∗

1
and u2(xc, yc)|t=0 = u∗

2.
Here we present the results of two computer experiments differing in the form of

the initial conditions.
In the first case, the initial distribution of species is given in the following form:

u1(x, y, t) = u∗
1 + ε1(x − 100)

u2(x, y, t) = u∗
2 − ε2(y − 100),

where ε1 = 5 × 10−4, ε2 = 3 × 10−3. In this case the initial data contains only
one defect-point (xc, yc) = (100, 100). Snapshots of u1 are shown in Fig. 1 (spatial
patterns of u2 are qualitatively similar except for the early stages of the process when
the influence of the initial condition dominates). One spiral emerges around the defect-
point (Fig. 1a). The spiral grows gradually in (Fig. 1b, c). Eventually, the regular spatial
spiral prevails over the whole domain (Fig. 1d).

In the second case, the initial distribution of species is given in the following form:

u1(x, y, t) = u∗
1 + ε3(x − 80)(x − 140) + ε4(y − 60)(y − 140),

u2(x, y, t) = u∗
2 − ε5(x − 100) − ε6(y − 180),

where ε3 = 1 × 10−5, ε4 = 4 × 10−5, ε5 = 2 × 10−2 and ε6 = 1 × 10−3. In
this case, the initial data contains two defect-points (xc, yc) = (106.1767, 56.4669)
and (xc, yc) = (104.0321, 143.3332). The pattern formation processes are shown
in Fig. 2. Two spiral simultaneously emerges around the defect-point (Fig. 2a). The
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Fig. 1 Snapshots of one spiral wave at different time. a t = 200, b t = 400, c t = 600, d t = 800

spirals grow gradually in (Fig. 2b, c). Eventually, the two spatial spirals prevail over
the whole domain (Fig. 2d).

5 Discussion

In this paper, we have developed a theoretical framework for studying the phenom-
enon of pattern formation in a fractional reaction-diffusion system with time delays.
It was found (Theorems 2.1 and 2.2) that, apart from the anomalous diffusion-driven
Turing patterns, spatial spiral patterns can also arise as a consequence of Hopf bifurca-
tion when the bifurcation parameter, i.e., time delay τ goes beyond a threshold value
τ ∗. Moreover, we attempted to answer why the emerging spatial spiral patterns are
sensitive to initial data. Theorem 3.1 shows that the robustness is due to the exis-
tence of stable bifurcating periodic solutions, which leads to spatially inhomogeneous
distribution of species density.

Lévy flights are stochastic process characterised by the occurrence of extremely
long jumps such that the same sites are revisited much less frequently than in a normal
diffusion process. The length of these jumps is distributed according to Lévy stable
statistics with a power law tail and divergence of the second moment, which strongly
contradicts the ordinary Brownian motion for which all moments of the particle coor-
dinate are finite. The power law tail is also termed as “fat-tailed distribution” because
the tail falls off much more gently than for a Gaussian distribution. It is the property

123



1410 J Math Chem (2015) 53:1393–1411

Fig. 2 Snapshots of two spirals wave at different time. a t = 200, b t = 400, c t = 600, d t = 800

that lies at the heart of the interesting and unusual behaviour of Lévy flights. Real-
isation of the Lévy flights in physical phenomena are very diverse such as in fluid
dynamics, dynamical systems, and micelles [24]. Recent field study in ecology pro-
vided convincing evidence for the existence of Lévy flights among the foraging of
marine predators ranging across natural landscapes [25,26]. It was found that Lévy
flights are expected in places where prey is scare (e.g., less productive waters such as
the open ocean) while Brownian strategy is more likely to occur where prey is abun-
dant (e.g., the productive shelf or convergence-front habitats). These two foraging
strategies can be alternately performed by some individuals and which is the ongoing
strategy depends on the gradients of environment that the individuals are involved in.
Our feedback model can help to clarify spiral patterns of species interactions with
Lévy distribution. The proposed approach has applicability to other reaction-diffusion
systems including delays, such as competition model and mutualistic model.
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